Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56.026
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629521

RESUMEN

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Adulto , Femenino , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Calefacción , Monitoreo del Ambiente/métodos , Medición de Riesgo , Carbón Mineral/análisis , China
2.
Huan Jing Ke Xue ; 45(5): 2525-2536, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629518

RESUMEN

To evaluate the spatial and temporal distribution characteristics of ambient ozone (O3) in the Beijing-Tianjin-Hebei (BTH) Region, the land use regression (LUR) model and random forest (RF) model were used to simulate the ambient O3 concentration from 2015 to 2020. Meanwhile, all-cause, cardiovascular, and respiratory mortalities as well as economic losses attributed to O3 were also estimated. The results showed that upward trends with fluctuation were observed for ambient O3 concentration, mortalities, and economic losses attributable to O3 exposure in the BTH Region from 2015 to 2020. The areas with high O3 concentration and great changes were concentrated in the central and southwestern regions, whereas the concentration in the northern region was low, and the change degree was small. The spatial distribution of the mortalities was also consistent with the spatial distribution of O3 concentration. From 2015 to 2020, the economic losses regarding all-cause mortality and cardiovascular mortality increased in 13 cities of the BTH Region, whereas the economic losses of respiratory mortality decreased in 4 cities in the BTH Region. The results indicated that the priority areas for O3 control were not uniform. Specifically, Beijing, Tianjin, Hengshui, and Xingtai were vital areas for O3 pollution control in the BTH Region. Differentiated control measures should be adopted based on the characteristics of these target areas to decline O3 concentration and reduce health impacts and economic losses associated with O3 exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Beijing , Ozono/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Ciudades , China
3.
Huan Jing Ke Xue ; 45(5): 2694-2706, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629533

RESUMEN

Eutrophication and harmful algae blooms are one of the common ecological and environmental problems faced by freshwater lakes all over the world. As a typical inland freshwater lake, Chaohu Lake exhibits a high level of eutrophication and algae blooms year-round and shows a spatiotemporal difference in different regions of the lake. In order to understand the basic regularity of the development and outbreak of algal blooms in Chaohu Lake, the data from the comprehensive water observation platform and remote sensing were integrated to obtain the spatiotemporal distribution of algal blooms from 2015 to 2020. Then, an evaluation model based on Boosted Regression Trees (BRT) was constructed to quantitatively assess the importance and interactions of various environmental factors on algal blooms at different stages. The results indicated that:① The occurrence of algal blooms in Chaohu Lake exhibited significant seasonal variations, with the cyanobacteria beginning to recover in spring and bring about a light degree of algal blooms in the western and coastal areas of Chaohu Lake. The density of cyanobacteria reached its maximum in summer and autumn, accompanied by moderate and severe degrees of algal bloom outbreaks. ② During the non-outbreak period, the variation in the cyanobacteria density was greatly affected by physical and chemical factors, which explained 80.3% of the variance in the change in cyanobacteria density. The high concentrations of dissolved oxygen content in the water column and the weak alkalinity (7.2-7.6) and appropriate water temperature (about 3℃) provided a favorable environmental condition for the breeding and growth of cyanobacteria. In addition, the onset of algal blooms was closely related to the air temperature steadily passing through the threshold. According to the statistics, the date of first outbreak of algal blooms in Chaohu Lake was 11 days or so after the air temperature steadily remained above 7℃. ③ During the outbreak period, the occurrence of algal blooms was influenced by the combination of cyanobacterial biomass and meteorological conditions such as temperature, wind speed, and sunshine duration. The cumulative contribution ratio of the four factors was as high as 95%, and each factor had an optimal interval conductive to the outbreak of algal blooms. Furthermore, the results of multi-factor interaction analysis indicated a larger probability of the outbreak of algal blooms in Chaohu Lake under the combined effect of high cyanobacteria density, suitable temperature, and the breeze. This study analyzed and revealed the spatiotemporal characteristics and the dominant influencing factors of algal blooms in Chaohu Lake at different stages, which could provide the scientific basis for the prediction, early warning, and disposal of algal blooms under the context of climate change.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Eutrofización , Floraciones de Algas Nocivas , Viento , Agua , China
4.
Huan Jing Ke Xue ; 45(5): 2913-2925, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629553

RESUMEN

In this study, a Meta-analysis was used to investigate the pollution status of eight farmland soil heavy metal elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in China. Meanwhile, their spatiotemporal changes and differences between different types of cultivated land were explored. The research data were chosen from 449 relevant literature data collected by CNKI and Web of Science from 2005 to 2021, and the Meta-analysis used a weighted method based on "sampling numbers", "study area", and "standard deviation". The results showed that the national average values of the eight heavy metal elements in Chinese farmland soil were ω(As)11.00 mg·kg-1, ω(Cd)0.350 2 mg·kg-1, ω(Cr)62.91 mg·kg-1, ω(Cu)28.87 mg·kg-1, ω(Hg)0.135 1 mg·kg-1, ω(Ni)28.91 mg·kg-1, ω(Pb)34.67 mg·kg-1,and ω(Zn)90.24 mg·kg-1. Compared with their background values, all elements except As accumulated to some extent, and Cd and Hg accumulated the most, exceeding their background values by 177.9% and 340.3%, respectively. The research results indicated that Cd and Hg were the main pollution elements in farmland soil in China, and their accumulation was mainly influenced by human activities. In terms of their temporal and spatial changes, the Yunnan-Guizhou Plateau and the eastern coast were the most concentrated areas of pollution cases, and the pollution center shifted from the middle reaches of the Yangtze River to the southwest over time. The accumulation of heavy metals in farmland soil was affected by crop planting types, and the accumulation of heavy metals in vegetable and paddy soil was significantly greater than that in other cultivated land types.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Granjas , China , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Medición de Riesgo , Contaminantes del Suelo/análisis , Metales Pesados/análisis
5.
Sci Total Environ ; 926: 172067, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38565352

RESUMEN

Diffusive gradients in thin films (DGTs) have been well-documented for the measurement of a broad range of organic pollutants in surface water. However, the performance has been challenged by the inherent periodic concentration fluctuations for most organic pollutants. Therefore, there is an urgent need to assess the true time-weighted average (TWA) concentration based on fluctuating concentration profiles. The study aimed to evaluate the responsiveness of DGT and accuracy of TWA concentrations, considering various concentration fluctuating scenarios of 20 pharmaceuticals in surface water. The reliability and accuracy of the TWA concentrations measured by the DGT were assessed by comparison with the sum of cumulative mass of DGT exposed at different stages over the deployment period. The results showed that peak concentration duration (1-5 days), peak concentration fluctuation intensity (6-20 times), and occurrence time of peak concentration fluctuation (early, middle, and late stages) have minimal effect on DGT's response to most target pharmaceutical concentration fluctuations (0.8 < CDGT/CTWA < 1.2). While the downward-bent accumulations of a few pharmaceuticals on DGT occur as the sampling time increases, which could be accounted for by capacity effects during a long-time sampling period. Additionally, the DGT device had good sampling performance in recording short fluctuating concentrations from a pulse event returning to background concentrations with variable intensity and duration. This study revealed a satisfactory capacity for the evaluation of the TWA concentration of pharmaceuticals integrated over the period of different pulse deployment for DGT, suggesting that this passive sampler is ideally suited as a monitoring tool for field application. This study represents the first trial for evaluating DGT sampling performance for pharmaceuticals with multiple concentration fluctuating scenarios over time, which would be valuable for assessing the pollution status in future monitoring campaign.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Difusión , Preparaciones Farmacéuticas
6.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38577774

RESUMEN

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Asunto(s)
Polietileno , Contaminantes Químicos del Agua , Polietileno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos , Siliconas
7.
Chemosphere ; 355: 141870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570048

RESUMEN

Antarctica stands as one of the most isolated and pristine regions on our planet. Regardless, recent studies have evidenced the presence of plastic pollution in Antarctic environments and biota. While these findings are alarming and put into perspective the reach of plastic pollution, it is necessary to assess the current knowledge of plastic pollution in Antarctica. In the present review, an updated literature review of plastic pollution in multiple Antarctic environmental compartments and biota was conducted. Studies were cataloged based on environmental compartments (e.g., sediments, seawater, soil, atmosphere) and biota from different ecological niches. A detailed analysis of the main findings, as well as the flaws and shortcomings across studies, was conducted. In general terms, several studies have shown a lack of adequate sampling and analytical procedures for plastic research (particularly in the case of microplastics) and standard procedures; thus, compromising the reliability of the data reported and comparability across studies. Aiming to guide future studies and highlight research needs, a list of knowledge gaps and recommendations were provided based on the analysis and discussion of the literature and following standardized procedures.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Regiones Antárticas , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ecosistema
8.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565529

RESUMEN

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Agua Subterránea/química , Pozos de Agua , Agua , Calidad del Agua , Contaminantes Químicos del Agua/análisis
9.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570413

RESUMEN

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Asunto(s)
Mercurio , Metales Pesados , Niño , Adulto , Humanos , Monitoreo del Ambiente/métodos , Agua/análisis , Ríos , Mar Negro , Turquia , Metales Pesados/análisis , Mercurio/análisis , Medición de Riesgo , Sodio/análisis , Cadmio/análisis
10.
Environ Monit Assess ; 196(5): 418, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570428

RESUMEN

The impact of partial and full COVID lockdowns in 2020 on vehicle miles traveled (VMT) in Kuwait was estimated using data extracted from the Directions API of Google Maps and a Python script running as a cronjob. This approach was validated by comparing the predictions based on the app to measuring traffic flows for 1 week across four road segments considered in this study. VMT during lockdown periods were compared to VMT for the same calendar weeks before the pandemic. NOx emissions were estimated based on VMT and were used to simulate the spatial patterns of NOx concentrations using an air quality model (AERMOD). Compared to pre-pandemic periods, VMT was reduced by up to 25.5% and 42.6% during the 2-week partial and full lockdown episodes, respectively. The largest reduction in the traffic flow rate occurred during the middle of these 2-week periods, when the traffic flow rate decreased by 35% and 49% during the partial and full lockdown periods, respectively. The AERMOD simulation results predicted a reduction in the average maximum concentration of emissions directly related to VMT across the region by up to 38%, with the maximum concentration shifting to less populous residential areas as a result of the lockdown.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis , Pandemias , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis
11.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557570

RESUMEN

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Contaminantes Químicos del Agua , Aguas Residuales , Nitratos/análisis , North Carolina , Escherichia coli , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Pozos de Agua , Agua Subterránea/microbiología , Compuestos Orgánicos
12.
J Water Health ; 22(3): 612-626, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557575

RESUMEN

In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Criptosporidiosis/epidemiología , Minnesota , Monitoreo del Ambiente/métodos , Abastecimiento de Agua , Pozos de Agua , Factores de Riesgo , Contaminantes Químicos del Agua/análisis
13.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557715

RESUMEN

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Monitoreo del Ambiente/métodos , Aguas del Alcantarillado/análisis , Lluvia , Análisis de la Demanda Biológica de Oxígeno , Ciudades
14.
Water Sci Technol ; 89(6): 1554-1569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557718

RESUMEN

Combined sewer overflows (CSOs) are one of the main sources of pollution in urban water systems and significantly impede the restoration of water body functionalities within urban rivers and lakes. To understand the research and frontier trends of CSOs comprehensively and systematically, a visual statistical analysis of the literature related to CSOs in the Web of Science core database from 1990 to 2022 was conducted using the bibliometric method using HistCite Pro and VOSviewer. The results reveal a total of 1,209 pertinent publications related to CSOs from 1990 to 2022, and the quantity of CSOs-related publications indicated an increasing trend. Investigations of the distribution and fate of typical pollutants in CSOs and their ecological effects on receiving waters and studies on pollution control technologies (source reduction, process control, and end-of-pipe treatment) are the current focus of CSOs research. CSOs pollution control technologies based on source reduction and the monitoring and control of emerging contaminants are at the forefront of scientific investigations on CSOs. This study systematically and comprehensively summarized current research topics and future research directions of CSOs, thus providing a reference for CSOs control and water environment management research.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Monitoreo del Ambiente/métodos , Agua , Contaminación Ambiental , Ríos , Aguas del Alcantarillado
15.
PLoS One ; 19(4): e0301197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557776

RESUMEN

Dams and weirs impede the continuity of rivers and transit of migratory fish. To overcome this obstacle, fishways are installed worldwide; however, management after installation is important. The Miyanaka Intake Dam has three fish ladders with different flow velocities and discharges and has been under adaptive management since 2012. Fish catch surveys, conducted as an adaptive management strategy, place a heavy burden on fish. Furthermore, a large number of investigators must be mobilized during the 30-day investigation period. Thus, a monitoring method using environmental DNA that exerts no burden on fish and requires only a few surveyors (to obtain water samples) and an in-house analyst was devised; however, its implementation in a fishway away from the point of analysis and with limited flow space and its effective water sampling frequency have not been reported. Therefore, in 2019, we started a trial aiming to evaluate the methods and application conditions of environmental DNA surveys for the continuous and long-term monitoring of various fish fauna upstream and downstream of the Miyanaka Intake Dam. To evaluate the fish fauna, the results of an environmental DNA survey (metabarcoding method) for 2019 to 2022 were compared to those of a catch survey in the fishway from 2012 to 2022. The results confirmed the use of environmental DNA surveys in evaluating the contribution of fishways to biodiversity under certain conditions and introduced a novel method for sample collection.


Asunto(s)
ADN Ambiental , Animales , Peces/genética , Biodiversidad , Ríos , Agua , Monitoreo del Ambiente/métodos , Código de Barras del ADN Taxonómico/métodos , Ecosistema
16.
Environ Monit Assess ; 196(5): 436, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589724

RESUMEN

Wadi El-Natrun is one of the most observable geomorphological features in the North-Western Desert of Egypt; it contains several old saline and saline soda lakes. This study investigates physicochemical and biochemical characteristics and estimates the total phenolic content (TPC), total flavonoid content (TVC), and bioactivities of sediment, cyanobacteria, and brine shrimp (Artemia salina) in soda lakes, i.e., El-Hamra Lake 1 (H1) and El-Hamra Lake 2 (H2). These soda lakes are unique extreme ecosystems characterized by high pH (> 9.3), high alkalinity, and salinity. Some extremophilic microorganisms are hosted in this ecosystem. The results revealed that the chemical water type of studied lakes is soda-saline lakes according to the calculated percentage sequence of major cations and anions. Sodium ranked first among major cations with an abundance ratio of e% 58, while chloride came first among anions with an abundance ratio of e% 71, and bicarbonate and carbonate occupied the last rank with an abundance of 6%. The biochemical investigations showed that TPC and TVC are present in concern contents of sediment, cyanobacteria, and brine shrimp (A. salina) which contribute 89% of antioxidant capacity and antimicrobial activities. Thus, this study helps better understand the chemical and biochemical adaptations in soda lake ecosystems and explores natural sources with potential applications in antioxidant-rich products and environmental conservation efforts.


Asunto(s)
Ecosistema , Lagos , Lagos/química , Egipto , Antioxidantes , Monitoreo del Ambiente/métodos , Aniones , Cationes
17.
J Environ Manage ; 357: 120700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565029

RESUMEN

To protect human health, wildlife and the aquatic environment, "safe uses" of pesticides are determined at the EU level while product authorization and terms of use are established at the national level. In Sweden, extra precaution is taken to protect drinking water, and permits are therefore required for pesticide use within abstraction zones. This paper presents MACRO-DB, a tool for assessing pesticide contamination risks of groundwater and surface water, used by authorities to support their decision-making for issuing such permits. MACRO-DB is a meta-model based on 583,200 simulations of the physically-based MACRO model used for assessing pesticide leaching risks at EU and national level. MACRO-DB is simple to use and runs on widely available input data. In a qualitative comparative assessment for two counties in Sweden, MACRO-DB outputs were in general agreement with groundwater monitoring data and matched or were more protective than the national risk assessment procedure for groundwater.


Asunto(s)
Agua Potable , Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/análisis , Suecia , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo/métodos , Internet
18.
J Environ Manage ; 357: 120677, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565033

RESUMEN

Attention on the use of transboundary aquifers (TBAs) and their cross-border impacts is growing as countries become increasingly concerned about their long-term water security. Cross-border impacts, in groundwater quality and quantity, tend to concentrate in specific parts of TBAs, as they largely depend on the transboundary flow dynamics where anthropogenic actions operate. Thus, there is a growing consensus that strategies intended to prevent or mitigate such impacts should be implemented in strategic zones rather than in the whole TBA. These transboundary groundwater management zones (TGMZs) are relatively recent but have become a prominent topic in TBA management. However, until now, limited effort has been put into exploring the concept of TGMZs and the methods for their delineation. This research aims to fill these gaps and provide a basis for the delineation of TGMZs, thus helping neighbouring countries meet international responsibilities regarding the right to use and enjoy groundwater in TBAs. By reviewing academic and grey literature accessible from public sources, we present an overview of the concept and terminology of TGMZs, the approaches proposed for their delineation, and current operating examples. Additionally, we build a conceptual framework for assessing cross-border groundwater impacts by identifying their typologies and causal factors. We then apply our framework to evaluate and compare three reported methods which identify and delineate TGMZs from distinct perspectives, thereby gaining insights into their principles, performances, and limitations. Finally, we provide recommendations for further research towards optimising methods for delineating TGMZs.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Abastecimiento de Agua , Contaminantes Químicos del Agua/análisis , Agua , Monitoreo del Ambiente/métodos
19.
J Environ Manage ; 357: 120716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565030

RESUMEN

Small watercourses are essential contributors to catchment water quality, but they continue to suffer degradation across Europe. A results-based agri-environment scheme, aimed at improving watercourse quality in Ireland, developed a rapid drainage assessment to identify point source risks. The assessment uses a scoring system based on visual indicators of nutrient and sediment risk, linking the outcomes to farmer payments. To understand how this novel drainage risk assessment relates to instream watercourse quality, we used three macroinvertebrate-based biotic indices (Q-value, Small Stream Impact Score and Proportion of Sediment Sensitive Invertebrates). Macroinvertebrate kick-sampling and physiochemical analysis were completed in May and July 2021 for 12 'At Risk' and 12 'Not at Risk' small watercourses as identified by the results-based scheme. Results show that the scheme's drainage risk assessment can identify point source risks but we found it does not directly reflect local instream quality as assessed by the biotic indices. Unexpectedly, the biotic indices showed watercourse degradation in 58% of the upstream (control) sampling points, indicating impacts not captured by the drainage risk assessment. Small watercourses displayed high heterogeneity, with significant species turnover between the sampling months. The Small Stream Impact Score was less influenced by temporal change than the Q-value index. There was a significant relationship between instream watercourse quality and sedimentation, as quantified by the Proportion of Sediment Sensitive Invertebrates. Including a measurement of instream sedimentation in the drainage assessments would improve the identification of risks and management. These results show that by linking farmer payments to the drainage risk assessments results-based payment schemes could positively contribute to improving catchment scale watercourse quality, but further work is required to capture wider sources of freshwater impacts.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Animales , Monitoreo del Ambiente/métodos , Calidad del Agua , Ríos , Europa (Continente)
20.
J Environ Manage ; 357: 120705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38569264

RESUMEN

Sustainable urban development is crucial for managing natural resources and mitigating environmental impacts induced by rapid urbanization. This study demonstrates an integrated framework using machine learning-based urban analytics techniques to evaluate spatiotemporal urban expansion in Saudi Arabia (1987-2022) and quantify impacts on leading land, water, and air-related environmental parameters (EPs). Remote sensing and statistical techniques were applied to estimate vegetation health, built-up area, impervious surface, water bodies, soil characteristics, thermal comfort, air pollutants (PM2.5, CH4, CO, NO2, SO2), and nighttime light EPs. Regression assessment and Principal Component Analysis (PCA) were applied to assess the relationships between urban expansion and EPs. The findings highlight the substantial growth of urban areas (0.067%-0.14%), a decline in soil moisture (16%-14%), water bodies (60%-22%), a nationwide increase of PM2.5 (44 µg/m3 to 73 µg/m3) and night light intensity (0.166-9.670) concentrations resulting in significant impacts on land, water, and air quality parameters. PCA showed vegetation cover, soil moisture, thermal comfort, PM2.5, and NO2 are highly impacted by urban expansion compared to other EPs. The results highlight the need for effective and sustainable interventions to mitigate environmental impacts using green innovations and urban development by applying mixed-use development, green space preservation, green building technologies, and implementing renewable energy approaches. The framework recommended for environmental management in this study provides a robust foundation for evidence-based policies and adaptive management practices that balance economic progress and environmental sustainability. It will also help policymakers and urban planners in making informed decisions and promoting resilient urban growth.


Asunto(s)
Monitoreo del Ambiente , Urbanización , Monitoreo del Ambiente/métodos , Arabia Saudita , Dióxido de Nitrógeno , Suelo , Material Particulado , Agua , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...